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Abstract—This paper provides upper and lower bounds on the
optimal guessing moments of a random variable taking values
on a finite set when side information may be available. These
moments quantify the number of guesses required for correctly
identifying the unknown object and, similarly to Arikan’s bounds,
they are expressed in terms of the Arimoto-Rényi conditional
entropy. Although Arikan’s bounds are asymptotically tight, the
improvement of the bounds in this paper is significant in the
non-asymptotic regime. Relationships between moments of the
optimal guessing function and the MAP error probability are
provided, characterizing the exact locus of their attainable values.

Index Terms – Guessing moments, MAP decision rules,
M -ary hypothesis testing, error probability, Rényi information
measures.

I. INTRODUCTION

The problem of guessing discrete random variables has
found a variety of applications in information theory, coding
theory, cryptography, and searching and sorting algorithms.
The central object of interest is the distribution of the number
of guesses required to identify a realization of a random
variable X , taking values on a finite or countably infinite set
X = {1, . . . , |X |}, by asking questions of the form “Is X
equal to x?”. A guessing function is a one-to-one function
g : X → X , which can be viewed as a permutation of
the elements of X in the order in which they are guessed.
We can envision a generic algorithm that outputs g−1(1);
a supervisor checks whether X = g−1(1), if so then the
algorithm halts; otherwise, the algorithm outputs g−1(2) and
the process repeats until the value of X is guessed correctly.
Therefore, the number of guesses is g(x) when the true
outcome is x ∈ X .

Lower and upper bounds on the minimal expected number
of required guesses for correctly identifying the realization
of X , expressed as a function of the Shannon entropy H(X),
have been respectively derived by Massey [6] and by McEliece
and Yu [7]. More generally, given a probability mass function
PX on X , it is of interest to minimize the generalized guessing
moment

E[gρ(X)] =
∑
x∈X

PX(x)gρ(x), ρ > 0. (1)

For an arbitrary positive ρ, the ρ-th moment of the number
of guesses is minimized by selecting the guessing function to
be a ranking function gX , for which gX(x) = k if PX(x)

is the k-th largest mass. Upper and lower bounds on the ρ-
th moment of ranking functions, expressed in terms of the
Rényi entropy Hα(X) of order α = 1

1+ρ , were derived by
Arikan [1], followed by a refined upper bound by Boztaş
[3]. Although if |X | is small, it is straightforward to evaluate
numerically the guessing moments, the benefit of bounds
expressed in terms of Rényi entropies is particularly relevant
when dealing with a random vector Xn = (X1, . . . , Xn)
whose letters belong to a finite alphabet A; computing all
the probabilities of the mass function PXn over the set An,
and then sorting them in decreasing order for the calculation
of the ρ-th moment of the optimal guessing function for the
elements of An has exponential complexity in n. Therefore, it
becomes infeasible even for moderate values of n. In contrast,
regardless of the value of n, bounds on guessing moments
which depend on the Rényi entropy are readily computable
if for example {Xi}ni=1 are independent; in which case, the
Rényi entropy of the vector is equal to the sum of the Rényi
entropies of its components (hence, the exponential complexity
is reduced to linear complexity in n; furthermore, in the i.i.d.
case, the complexity of computing the Rényi entropy of Xn

is independent of n). Arikan’s bounds are asymptotically tight
for random vectors of length n as n → ∞, so another benefit
of these bounds is that they provide the correct exponential
growth rate of the guessing moments for sufficiently large n. In
[1], Arikan generalized his bounds to allow side information,
leading to asymptotically tight bounds which are expressed in
terms of the Arimoto-Rényi conditional entropy [2].

Section II defines the Rényi information measures. Sec-
tion III provides upper and lower bounds on the minimal
guessing moments of a random variable taking a finite number
of values where side information on its value may be available.
In the non-asymptotic regime, these bounds improve earlier
results by Arikan [1] and Boztaş [3]. Section III also provides
tight lower and upper bounds which establish relationships
between the MAP error probability in M -ary hypothesis
testing, and the moments of the optimal guessing function for
correctly identifying X when side information Y is available.
Due to space limitations, all proofs appear in the full paper
version [11].

II. PRELIMINARIES

The information measures used in this paper apply to
discrete random variables.



Definition 1: [8] Let PX be a probability distribution on a
discrete set X . The Rényi entropy of order α ∈ (0, 1)∪(1,∞)
of X is defined as

Hα(X) =
1

1− α
log
∑
x∈X

Pα
X(x). (2)

By its continuous extension,

H0(X) = log
∣∣{x ∈ X : PX(x) > 0}

∣∣, (3)
H1(X) = H(X), (4)

H∞(X) = log
1

pmax
(5)

where pmax is the largest of the masses of X .
Definition 2: For α ∈ (0, 1) ∪ (1,∞), the binary Rényi

divergence of order α is defined as the continuous extension
to [0, 1]2 of

dα(p∥q) = 1
α−1 log

(
pαq1−α + (1− p)α(1− q)1−α

)
. (6)

Furthermore, for α = 1, dα(p∥q) is equal to the binary relative
entropy:

d1(p∥q) = d(p∥q) = p log
p

q
+ (1− p) log

1− p

1− q
. (7)

Definition 3: [2] Let PXY be defined on X ×Y , where X
is a discrete random variable. The Arimoto-Rényi conditional
entropy of order α ∈ [0,∞] of X given Y is defined as
follows:

• If α ∈ (0, 1) ∪ (1,∞), then

Hα(X|Y )

=
α

1− α
log E

(∑
x∈X

Pα
X|Y (x|Y )

) 1
α

 (8)

=
α

1− α
log

∑
y∈Y

PY (y) exp

(
1− α

α
Hα(X|Y = y)

)
,

(9)

where (9) applies if Y is a discrete random variable.
• By its continuous extension, the Arimoto-Rényi condi-

tional entropy of orders 0, 1 and ∞ is defined as

H0(X|Y ) = sup
y∈Y

H0(X |Y = y), (10)

H1(X|Y ) = H(X|Y ), (11)

H∞(X|Y ) = − log E
[
max
x∈X

PX|Y (x|Y )
]

(12)

where (10) applies if Y is a discrete random variable.

Properties of the Arimoto-Rényi conditional entropy were
studied in [5], [9] and [10].

As in [10, Section 4], we find several useful results satisfied
by the Arimoto-Rényi conditional entropy of negative orders.

III. IMPROVED BOUNDS ON GUESSING MOMENTS

This section provides improved upper and lower bounds on
the guessing moments of a discrete random variable. The upper
bounds correspond to the case where the guessing function is a
ranking function. These bounds are proved in [11, Section 3].

A. Key result

Theorem 1: Given a discrete random variable X taking
values on a set X , a function g : X → (0,∞), and a scalar
ρ ̸= 0, then
1)

sup
β∈(−ρ,+∞)\{0}

1

β

[
H β

β+ρ
(X)− log

∑
x∈X

g−β(x)

]

≤1

ρ
logE[gρ(X)] (13)

≤ inf
β∈(−∞,−ρ)\{0}

1

β

[
H β

β+ρ
(X)− log

∑
x∈X

g−β(x)

]
.

(14)

2) For τ ∈ R, define the probability mass function

Qτ (x) =
g−τ (x)∑

a∈X
g−τ (a)

, x ∈ X , (15)

provided that the sum in the right side of (15) is finite. The
following results hold:
a) If PX = Qρ and X is a finite set, then

1

ρ
logE[gρ(X)] = −1

ρ
log

(
1

|X |
∑
x∈X

g−ρ(x)

)
. (16)

b) If PX = Qν with ν > 0 and ν ̸= ρ, then the supremum
in the left side of (13) is attained at β = ν − ρ, and
the inequality in (13) is an identity. Conversely, if (13)
is an identity and the supremum is attained at β∗ ∈
(−ρ,+∞) \ {0}, then PX = Qρ+β∗ .

c) If PX = Qν with ν < 0 and ν ̸= ρ, then the infimum
in the right side of (14) is attained at β = ν−ρ, and the
inequality in (14) is an identity. Conversely, if (14) is an
identity and the infimum is attained at β∗ ∈ (−∞,−ρ)\
{0}, then PX = Qρ+β∗ .

Remark 1: For ρ > 0, the supremum over β in the right side
of (13) involves negative orders of the Rényi entropy whenever
β ∈ (−ρ, 0). The optimal value of β ∈ (−ρ,∞) \ {0} can be
negative; furthermore, for every such β, Theorem 1 asserts
the existence of a probability mass function for which (13)
is achieved with equality. Allowing Rényi entropy of negative
orders in Theorem 1 is therefore beneficial.

The particularization of Item 1) in Theorem 1 to β = 1
yields the following, generally looser, bound:

Corollary 1: [4, Lemma 2] Let X and g be as in Theorem 1,
and ρ ∈ (−1, 0) ∪ (0,∞). Then,

1

ρ
logE

[
gρ(X)

]
≥ H 1

1+ρ
(X)− log

∑
x∈X

1

g(x)
. (17)



B. Lower bounds

Theorem 1 enables to derive lower bounds on guessing
moments with or without side information, improving the
bounds in [1].

Theorem 2: Let X be a random variable taking values on
the finite set X = {1, . . . ,M}, and let g : X → X be an
arbitrary guessing function. Then, for every ρ ̸= 0,

1

ρ
logE

[
gρ(X)

]
≥ sup

β∈(−ρ,∞)\{0}

1

β

[
H β

β+ρ
(X)− log uM (β)

]
(18)

with

uM (β)

=



loge M + γ +
1

2M
− 5

6(10M2 + 1)
β = 1,

min
{
ζ(β)− (M+1)1−β

β−1 − (M+1)−β

2 , uM (1)
}

β > 1,

1 +
1

1− β

[(
M + 1

2

)1−β −
(
3
2

)1−β
]

|β| < 1,

M1−β − 1

1− β
+ 1

2

(
1 +M−β

)
β ≤ −1

(19)

where γ ≈ 0.5772 is the Euler-Mascheroni constant, and

ζ(β) =
∞∑

n=1

1
nβ is the Riemann zeta function for β > 1.

Remark 2: Specializing Theorem 2 to β = 1 and using
uM (1) ≤ 1 + loge M for M ≥ 2, we obtain

1

ρ
logE

[
gρ(X)

]
≥ H 1

1+ρ
(X)− log

(
1 + loge M

)
(20)

for ρ ∈ (−1,∞). This bound was obtained in the range ρ > 0
by Arikan [1, (1)].

The following remark justifies the utility of Theorem 2.
Remark 3: Since Theorem 1 also applies to guessing func-

tions, it gives a lower bound on 1
ρ logE

[
gρ(X)

]
where uM (β)

in (18)–(19) is replaced by
M∑
j=1

1
jβ

for β ∈ (−ρ,∞) \ {0}.

While numerical evidence shows that it is slightly better than
the bound in Theorem 2 for large M , the latter bound is much
easier to compute if M is large.

C. Upper bounds

The average number of guesses is minimized by taking the
guessing function to be the ranking function gX , for which
gX(x) = k if PX(x) is the k-th largest mass [6]. Although
the tie breaking affects the choice of gX , the distribution of
gX(X) does not depend on how ties are resolved. Not only
does this strategy minimize the average number of guesses, but
it also minimizes the ρ-th moment of the number of guesses
for every ρ > 0.

Theorem 3: [1, Proposition 4] Let X be a discrete random
variable taking values on a set X , and let gX be the ranking
function according to PX . Then, for all ρ > 0,

E[gρX(X)] ≤ exp
(
ρH 1

1+ρ
(X)

)
. (21)

The following results tighten Theorem 3.
Theorem 4: Under the assumptions in Theorem 3, for all

ρ ≥ 0,

E[gρX(X)] ≤ 1

1 + ρ

[
exp
(
ρH 1

1+ρ
(X)

)
− 1
]

+ exp
(
(ρ− 1)+H 1

ρ
(X)

)
(22)

where (x)+ , max{x, 0} for x ∈ R.
In the range ρ ∈ [0, 2], we can tighten (22) according to the

following result.
Theorem 5: Under the assumptions in Theorem 3,

a) For ρ ∈ [0, 1]

E[gρX(X)] ≤ 1

1 + ρ
exp
(
ρH 1

1+ρ
(X)

)
+

ρ− (1− ρ)(2ρ − 1)(1− pmax)

1 + ρ
. (23)

b) For ρ ∈ [1, 2]

E[gρX(X)] ≤ 1

1 + ρ
exp
(
ρH 1

1+ρ
(X)

)
+

1

ρ
exp

(
(ρ− 1)H 1

ρ
(X)

)
+

ρ2 − ρ− 1

ρ(1 + ρ)
.

(24)

Furthermore, both (23) and (24) hold with equality if X is
deterministic.

Remark 4: Particularizing (24) to ρ = 1 and ρ = 2, we
recover the bounds on the first and second moments in [3,
Theorem 3]. Furthermore, the bounds in (23) and (24) provide
a continuous transition at ρ = 1.

Theorem 6: Under the setting in Theorem 3, for ρ ≥ 2,

E[gρX(X)] ≤ 1 +

⌊ρ⌋∑
j=0

cj(ρ)
[
exp

(
(ρ− j)H 1

1+ρ−j
(X)

)
− 1
]
,

(25)

where {cj(ρ)} is given by

cj(ρ) =



1

1 + ρ
j = 0

1
2 j = 1

ρ . . . (ρ− j + 2)

2j
j ∈ {2, . . . , ⌊ρ⌋ − 1}

ρ . . . (ρ− j + 2)

2j−1 (ρ− j + 1)
j = ⌊ρ⌋

(26)

and ⌊x⌋ denotes the largest integer that is smaller than or equal
to x.



Remark 5: In contrast to [3, Theorem 3], Theorems 5 and 6
provide an explicit upper bound on E[gρX(X)] for ρ > 0 as
a function of Rényi entropies of X . Note also that the upper
bounds in (24) and (25) coincide at ρ = 2.

Remark 6: Numerical evidence shows that none of the
bounds in (22) and (25) supersedes the other for ρ > 2.

Example 1: Let X be geometrically distributed restricted to
{1, . . . ,M} with the probability mass function

PX(k) =
(1− a) ak−1

1− aM
, k ∈ {1, . . . ,M} (27)

where a = 0.9 and M = 32. Table I compares
1
3 loge E[g

3
X(X)] to its various lower and upper bounds (LBs

and UBs, respectively). Notice that in this example, the upper
bound in (25) improves the bound in (22).

TABLE I
COMPARISON OF 1

3
loge E[g3X(X)] AND BOUNDS IN EXAMPLE 1.

(20) Theorem 2 1
3
loge E[g3X(X)] (25) (22) (21)

LB LB exact value UB UB UB

1.864 2.593 2.609 2.920 2.939 3.360

D. Bounds on guessing moments with side information

This subsection extends the lower and upper bounds in
Sections III-B and III-C to allow side information Y for
guessing the value of X . These bounds tighten the results in
[1, Theorem 1] and [1, Proposition 4] for all ρ > 0.

Theorem 7: Let X and Y be discrete random variables
taking values on the sets X = {1, . . . ,M} and Y , respectively.
For all y ∈ Y , let g(·|y) be a guessing function of X given
that Y = y. Then, for ρ ∈ (0,∞),

1

ρ
logE

[
gρ(X|Y )

]
≥ sup

β∈(−ρ,0)∪(0,∞)

1

β

[
H β

β+ρ
(X|Y )− log uM (β)

]
(28)

with uM (·) as defined in (19).
Theorem 8: Let X and Y be discrete random variables

taking values on sets X and Y , respectively. For all y ∈ Y , let
gX|Y (·|y) be a ranking function of X given that Y = y. Then,
for ρ ∈ (0,∞), the upper bounds in Theorems 4, 5 and 6 hold
for E[gρX|Y (X|Y )] by replacing the Rényi entropy Hα(X)

with the conditional Rényi entropy Hα(X|Y ) for α > 0.

E. Guessing moments and the minimum probability of error

Let X and Y be discrete random variables,1 taking values
on the sets X and Y respectively. The minimum probability
of error of X given Y , denoted by εX|Y , is achieved by the
maximum-a-posteriori (MAP) decision rule. Hence,

εX|Y =
∑
y∈Y

PY (y)

[
1−max

x∈X
PX|Y (x|y)

]
. (29)

1The assumption that Y is a discrete random variable can be easily
dispensed with.

In contrast, the moments of the ranking function
E[gρX|Y (X|Y )] quantify the number of guesses required
for correctly identifying the unknown object X on the basis
of Y . It is therefore natural to establish relationships between
both quantities. First note that by definition,

1− εX|Y = P[gX|Y (X|Y ) = 1]. (30)

In [10], we derived lower and upper bounds on εX|Y as
a function of Hα(X|Y ) for an arbitrary order α. In this
section, Theorems 7–8 provide lower and upper bounds on
guessing moments of a ranking function gX|Y (X|Y ) as a
function of Arimoto-Rényi conditional entropies. As a natural
continuation to these studies, we derive tight lower and upper
bounds on E[gρX|Y (X|Y )] as a function of εX|Y .

Theorem 9: Let X and Y be discrete random variables
taking values on sets X = {1, . . . ,M} and Y , respectively.
Then, for ρ > 0,

fρ(εX|Y ) ≤ E[gρX|Y (X|Y )] (31)

≤ 1 +

 1
M−1

M∑
j=2

jρ − 1

 εX|Y (32)

where the function fρ : [0, 1) → [0,∞) is given by

fρ(u) = (1− u)

ku∑
j=1

jρ + [1− (1− u)ku](ku + 1)ρ, (33)

ku =

⌊
1

1− u

⌋
. (34)

The lower and upper bounds in (31) and (32) are tight:
• Let pmax(y) = max

x∈X
PX|Y (x|y) for y ∈ Y . The lower

bound is attained if and only if pmax(y) = pmax is fixed
for all y ∈ Y , and conditioned on Y = y, X has

⌊
1

pmax

⌋
masses equal to pmax, and an additional mass equal to
1− pmax

⌊
1

pmax

⌋
whenever 1

pmax
is not an integer.

• The upper bound is attained if and only if regardless of
y ∈ Y , conditioned on Y = y, X is equiprobable among
its M − 1 conditionally least likely values on X .

Remark 7: The lower and upper bounds in (31) and (32)
coincide in each of the extreme cases εX|Y = 0 or 1− 1

M .
In view of Theorems 2 and 9, the next result provides an

explicit lower bound on εX|Y as a function of Hα(X|Y ) for
any non-zero α < 1.

Theorem 10: Let X and Y be discrete random variables
taking values on sets X = {1, . . . ,M} and Y , respectively.
Then, for all α ∈ (−∞, 0) ∪ (0, 1),

εX|Y ≥

sup
ρ>0


exp

((
1
α − 1

) [
Hα(X|Y )− log uM

(
αρ
1−α

)])
− 1

1
M−1

M∑
j=2

jρ − 1


(35)



with uM (·) as defined in (19).
In [10], we derived the following lower bounds on εX|Y as

a function of Hα(X|Y ):
1) α > 0: A generalization of Fano’s inequality in [10,

Theorem 3] is given by

Hα(X|Y ) ≤ logM − dα
(
εX|Y ∥1− 1

M

)
(36)

with dα(·∥·) as defined in (6).
2) α < 0: An explicit lower bound in [10, Theorem 6] is

given by

εX|Y ≥ exp

(
1− α

α

[
Hα(X|Y )− log(M − 1)

])
. (37)

Remark 8: Shannon’s inequality [12] (see also [13]) gives
an explicit lower bound on εX|Y as a function of H(X|Y )
when M is finite:

εX|Y ≥ 1

6

H(X|Y )

logM + log logM − logH(X|Y )
, (38)

where, in the right side of (38), the base of the logarithm
and the units of the conditional entropy must be equal (and
can be arbitrary). The bound in (35) becomes trivial in the
limit where α ↑ 1 since, for any fixed ρ > 0, (19) implies that
uM

(
αρ
1−α

)
→ 1, and therefore the lower bound on εX|Y tends

to zero in this case. Nevertheless, numerical experimentation
shows that the convergence of this bound in (35) to zero is
only affected by values of α very close to 1, as it is illustrated
in Example 2 with a comparison to Shannon’s bound in (38).

Example 2: Let X and Y be random variables taking values
on X = {1, 2, 3, 4}, and let

[
PXY (x, y)

]
(x,y)∈X 2 =

1

100


9 3 4 9
9 9 3 4
4 9 9 3
3 4 9 9

 . (39)

It can be verified from (29) that εX|Y = 16
25 = 0.640. Table II

TABLE II
EXAMPLE 2: LOWER BOUNDS ON εX|Y .

α (35) (36) (37)

−1 0.463 – 0.447

− 1
2

0.475 – 0.355

− 1
4

0.482 – 0.206
1
5

0.494 0.523 –
1
2

0.502 0.530 –
4
5

0.510 0.536 –

shows a slight advantage of the lower bound in (36) over (35)
for α ∈ (0, 1), and a superiority of the lower bound in (35)
over (37) for some negative values of α.

In view of Remark 8, the lower bound in (35) for α close
to 1 is compared with Shannon’s lower bound in (38). For
α = 0.99, the lower bound in (35) is equal to 0.515 (note that
it is slightly looser than (36), which is equal to 0.540); on the
other hand, the lower bound in (38) is equal to 0.146.

Theorem 9 establishes relationships between the ρ-th mo-
ment of the optimal guessing function, for fixed ρ > 0, and the
MAP error probability. This characterizes the exact locus of
their attainable values. The following result suggests an easy
way to determine the MAP error probability on the basis of
the knowledge of these ρ-th moments at an arbitrarily small
right neighborhood of ρ = 0.

Theorem 11: Let X and Y be discrete random variables
taking values on sets X = {1, . . . ,M} and Y , respectively.
For an integer k ≥ 0, let zk = dk

dρk E[gρX|Y (X|Y )]
∣∣∣
ρ=0

. Then,

εX|Y = 1− 1

cM

∣∣∣∣∣∣∣∣∣
z0 1 · · · 1
z1 loge 2 · · · loge M
...

...
...

...
zM−1 logM−1

e 2 · · · logM−1
e M

∣∣∣∣∣∣∣∣∣
with

cM =


loge 2, M = 2,
M∏
k=2

loge k
∏

2≤i<j≤M

loge

(j
i

)
, M ≥ 3.

(40)
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[11] I. Sason and S. Verdú, “Improved bounds on lossless source coding and
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